111 research outputs found

    Transient stress evolution in repulsion and attraction dominated glasses

    Full text link
    We present results from microscopic mode coupling theory generalized to colloidal dispersions under shear in an integration-through-transients formalism. Stress-strain curves in start-up shear, flow curves, and normal stresses are calculated with the equilibrium static structure factor as only input. Hard spheres close to their glass transition are considered, as are hard spheres with a short-ranged square-well attraction at their attraction dominated glass transition. The consequences of steric packing and physical bond formation on the linear elastic response, the stress release during yielding, and the steady plastic flow are discussed and compared to experimental data from concentrated model dispersions.Comment: J. Rheol., 58, in prin

    Nonequilibrium steady states in contact: Approximate thermodynamic structure and zero-th law for driven lattice gases

    Full text link
    We explore driven lattice gases for the existence of an intensive thermodynamic variable which could determine "equilibration" between two nonequilibrium steady-state systems kept in weak contact. In simulations, we find that these systems satisfy surprisingly simple thermodynamic laws, such as the zero-th law and the fluctuation-response relation between the particle-number fluctuation and the corresponding susceptibility remarkably well. However at higher densities, small but observable deviations from these laws occur due to nontrivial contact dynamics and the presence of long-range spatial correlations.Comment: Revised, 4 pages, 5 figure

    Can one identify non-equilibrium in a three-state system by analyzing two-state trajectories?

    Full text link
    For a three-state Markov system in a stationary state, we discuss whether, on the basis of data obtained from effective two-state (or on-off) trajectories, it is possible to discriminate between an equilibrium state and a non-equilibrium steady state. By calculating the full phase diagram we identify a large region where such data will be consistent only with non-equilibrium conditions. This regime is considerably larger than the region with oscillatory relaxation, which has previously been identified as a sufficient criterion for non-equilibrium.Comment: 4 pages, 2 figures, J. Chem. Phys. (2010) (in press

    Overshoots in stress strain curves: Colloid experiments and schematic mode coupling theory

    Full text link
    The stress versus strain curves in dense colloidal dispersions under start-up shear flow are investigated combining experiments on model core-shell microgels, computer simulations of hard disk mixtures, and mode coupling theory. In dense fluid and glassy states, the transient stresses exhibit first a linear increase with the accumulated strain, then a maximum ('stress overshoot') for strain values around 5%, before finally approaching the stationary value, which makes up the flow curve. These phenomena arise in well-equilibrated systems and for homogeneous flows, indicating that they are generic phenomena of the shear-driven transient structural relaxation. Microscopic mode coupling theory (generalized to flowing states by integration through the transients) derives them from the transient stress correlations, which first exhibit a plateau (corresponding to the solid-like elastic shear modulus) at intermediate times, and then negative stress correlations during the final decay. We introduce and validate a schematic model within mode coupling theory which captures all of these phenomena and handily can be used to jointly analyse linear and large-amplitude moduli, flow curves, and stress-strain curves. This is done by introducing a new strain- and time-dependent vertex into the relation between the the generalized shear modulus and the transient density correlator.Comment: 21 pages, 13 figure

    The influence of annealings on structure and microhardness of Fe-Mo-V-Nb-C steel processed by high-pressure torsion

    Get PDF
    The influence of high-pressure torsion on microstructure, microhardness and thermal stability of lowcarbon steel Fe-0,1Mo-0,6Mn-0,8Cr-0,2Ni-0,3Si-0,2Cu-0,1V-0,06Nb-0,09C, (wt.%) was investigated. It was shown that ultrafine-grained structure formed by high-pressure torsion possesses a high microhardness (H[mu]=7,0 GPa) and high thermal stability up to the temperature of 400°С

    Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report

    Get PDF
    Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF). Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28%) or a high-salt diet (5.5%) starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food) (ZDF+S+E), hydralazine (25 mg/kg per day) (ZDF+S+H), or no treatment (ZDF+S). Rats on normal salt-diet were assigned to eplerenone (ZDF+E) or no treatment (ZDF). Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL) or high-salt diet (ZL+S) serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio) and vascular stiffness (strain and stress) were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition with less resistant components. This indicates increased vascular stiffness in salt-loaded ZDF rats, which could be prevented by eplerenone but not by hydralazine. Collagen content was increased in ZL and ZDF rats on high-salt diet. Eplerenone and hydralazine prevented the increase of collagen content. There was no difference in elastin content. Conclusion Eplerenone and hydralazine prevented increased media-to-lumen ratio in salt-loaded ZDF-rats, indicating a regression of vascular hypertrophy, which is likely mediated by the blood pressure lowering-effect. Eplerenone has additionally the potential to prevent increased vascular stiffness in salt-loaded ZDF-rats. This suggests an effect of the specific aldosterone antagonist on adverse vascular wall remodelling

    The Effects of Social Presence on Adherence-Focused Guidance in Problematic Cannabis Users: Protocol for the CANreduce 2.0 Randomized Controlled Trial

    Get PDF
    Background: In European countries, including Switzerland, cannabis is the most commonly used illicit drug. Offering a Web-based self-help tool could potentially reach users who otherwise would not seek traditional help. However, such Web-based self-help tools often suffer from low adherence. Objective: Through adherence-focused guidance enhancements, the aim of this study was to increase adherence in cannabis users entering a Web-based self-help tool to reduce their cannabis use and, in this way, augment its effectiveness. Methods: This paper presents the protocol for a three-arm randomized controlled trial (RCT) to compare the effectiveness of (1) an adherence-focused, guidance-enhanced, Web-based self-help intervention with social presence; (2) an adherence-focused, guidance-enhanced, Web-based self-help intervention without social presence; and (3) a treatment-as-usual at reducing cannabis use in problematic users. The two active interventions, each spanning 6 weeks, consist of modules designed to reduce cannabis use and attenuate common mental disorder (CMD) symptoms, including depression, anxiety, and stress-related disorder symptoms based on the approaches of motivational interviewing and cognitive behavioral therapy. With a target sample size of 528, data will be collected at baseline, 6 weeks, and 3 months after baseline. The primary outcome measurement will be the number of days of cannabis use on the preceding 7 days. Secondary outcomes will include the quantity of cannabis used in standardized cannabis joints, the severity of cannabis dependence, changes in CMD symptoms, and adherence to the program. Data analysis will follow the intention-to-treat principle and employ (generalized) linear mixed models. Results: The project commenced in August 2016; recruitment is anticipated to end by December 2018. First results are expected to be submitted for publication in summer 2019. Conclusions: This study will provide detailed insights on if and how the effectiveness of a Web-based self-help intervention aiming to reduce cannabis use in frequent cannabis users can be improved by theory-driven, adherence-focused guidance enhancement

    Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2

    Get PDF
    In this paper we prove finite-time blowup of radially symmetric solutions to the quasilinear parabolic-parabolic two-dimensional Keller-Segel system for any positive mass. This is done in case of nonlinear diffusion and also in the case of nonlinear cross-diffusion provided the nonlinear chemosensitivity term is assumed not to decay. Moreover, it is shown that the above-mentioned lack of non-decay assumption is essential with respect to keeping the dichotomy finite-time blowup against boundedness of solutions. Namely, we prove that without the non-decay assumption possible asymptotic behaviour of solutions includes also infinite-time blowup.Comment: 14 page

    Regulation of Pacing Strategy during Athletic Competition

    Get PDF
    Background: Athletic competition has been a source of interest to the scientific community for many years, as a surrogate of the limits of human ambulatory ability. One of the remarkable things about athletic competition is the observation that some athletes suddenly reduce their pace in the mid-portion of the race and drop back from their competitors. Alternatively, other athletes will perform great accelerations in mid-race (surges) or during the closing stages of the race (the endspurt). This observation fits well with recent evidence that muscular power output is regulated in an anticipatory way, designed to prevent unreasonably large homeostatic disturbances. Principal Findings: Here we demonstrate that a simple index, the product of the momentary Rating of Perceived Exertion (RPE) and the fraction of race distance remaining, the Hazard Score, defines the likelihood that athletes will change their velocity during simulated competitions; and may effectively represent the language used to allow anticipatory regulation of muscle power output. Conclusions: These data support the concept that the muscular power output during high intensity exercise performance is actively regulated in an anticipatory manner that accounts for both the momentary sensations the athlete is experiencing as well as the relative amount of a competition to be completed
    corecore